MaxDiff Mixture Models

From Displayr
(Redirected from Max-Diff Mixture Models)
Jump to navigation Jump to search

The main mixture models used to analyze the MaxDiff experiments are:

  • Latent class logit models, which assume that the population contains a number of segments (e.g., a segment wanting low priced phones with few features and another segment willing to pay a premium for more features) and identifies the segments automatically.
  • Random parameters logit models, which assume that the distribution of the parameters in the population is described by a multivariate normal distribution. This model is sometimes referred to in market research as Hierarchical Bayes, although this is a misnomer. See Tricked Random Parameters Logit Model for an example.
  • C-Factor models, which can be either latent class or random parameters logit models, but additionally allow for heterogeneity in scale factors.

Help improve this page

Did you find what you were looking for?

Yes
No